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The first term in the braces is easily calculated as 
follows. By the differentiation of equation (A-2), one 
gets 

d( 2 ~o(p)=~o"(p) ~ +~o'(p) d~-- T = -  . 

Since ¢p'(p) is zero at the point p =P0,  one obtains 

(-dd~)p=vo = [[--~" 1 ~ 1 1 ' 2 ~  (Po) J (A-6)* 

By the use of this relation, the first term of (A-4) gives 
equation (28). 

The second term can be calculated with similar 
procedures. By the differential manipulation, one gets 

3 

d( 2 

dp d2p d~p 
+3A~(p) d( ~ (2  +Ah(p) -d~" (A-7) 

The derivatives (d2p/d(Z)v=vo and (d3p/d~'3)p=p0 can be 
successively determined from the relations derived by 
differentiating equation (A-5). Inserting these into 
(A-7), one obtains 

* As to the arguments on the phase angle of the expression 
[ ]1/2, see Jeffereys & Jeffereys (1956), p. 505. 

[~d~2-~ - (~4(p)~-~)]p=po ~- l - (  1/-)1/2 [ Ail 
A~0'3~ 5Ah(~0'3') 2 _Ah~0(4) l } 

+ (~0") 2 12((0") 3 + 4((p;~J v=po (A-8) 

where ¢p(3) and ~o (4) imply d3~p/dp 3 and d4~/dp 4 respective- 
ly. With this result, the second term of (A-4) gives 
equations (34). 
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The value of the residual R., = ((11-/2)2)/(I~), where/1 and/2 are the intensities of reflexion for two 
unrelated structures having the same symmetry and containing the same atoms, has the value 
1 - S4/(2X 2-..,r4) for non-centrosymmetric structures and ~ -  2Z4/3(X 2-  24) for centrosymmetric; the 
corresponding values for R1 = ((F1 - F2) 2)/(F 2) are approximately 2(1 - n/4) _~ 0.43 and 2(1 - 2/n) _ 0"73. 
More complex expressions are derived for hyper- and sesquisymmetric structures. If a residual with a 
scaling factor, such as $2 = ((11- EI2)Z)/(l~), is used, and the scaling factor E is refined by least-squares, 
the value of E obtained is about ½ or ½, instead of the true value unity. 

Introduction 

Lenstra (1974) has considered the values of the residual 

R2_ E(11-I2)2 
E l~ (1) 

((11--12) 2 ) 
- (ix2) , (2) 

where, in Lenstra's application, lx represents the inten- 

sity of the hkl reflexion from a correct structure and 12 
represents the corresponding intensity calculated for a 
structure that is incomplete or in some way incorrect. 
Wilson (1969) had earlier considered the case in which 
the structures differed only through the misplacement 
of a single atom, and still earlier (Wilson, 1950) the 
case where the structures were entirely unrelated, ex- 
cept that they consisted of the same atoms and had the 
same symmetry; in this first paper the less convenient 
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residual 
R =  Y I F , -  f2l 

Z F1 ' (3) 

where the F 's  are the magnitudes of the structure am- 
plitudes, was used. Lenstra states that for an entirely 
incorrect structure R 2 should be about 1.00, but gives 
no detailed discussion of the effect of symmetry. The 
present note obtains expressions for R 2 which depend 
explicitly on certain types of symmetry, crystallogra- 
phic and non-crystallographic, and discusses more 
briefly a third residual, 

2 ( F , -  F2) 2 
R, = ~ F~ ' (4) 

that is frequently used (Wilson, 1973). With unfor- 
tunate inconsistency Wilson (1969) has used the symbol 
R, also for 

Q _  2 111-121 (5) 
2I, 

A paper by Parthasarathy & Parthasarathi (1972) con- 
tains several results relevant to the problem of largest 
likely values, though they are not entirely easy to pick 
out from among the authors' very general calculations. 

Largest likely values of R2 

The form of R2, in which all quantities are real and po- 
sitive, is much easier to manipulate than those of R or 
R1, which require taking the moduli of quantities that 
may be negative or complex. The values of R2 can thus 
be obtained without the use of probability distribution 
functions, and require only the sums of powers of the 
atomic scattering factors, as in the variance calcula- 
tions of Wilson (1951, 1952) and Rogers & Wilson 
(1953). Equation (2) may be written 

( [ ( /1-  A1)-  ( I2-  A2) + ( A , -  A2)] 2) 
R 2 -  ([(I, - A,) + A,] 2) , (6) 

where A, and A2 are the mean values of/1 and/2.  On 
squaring and averaging this becomes 

var (1,)-2 cov (/1,/2)+ var (I2)+(A,-A2) 2 
R2= (7) 

var (/1)+ A~ 

where var and cov are the variance and covariance. 
Equation (7) is quite general; in the particular case of 
unrelated arrangements of the same atoms 

A, = A 2 = S ,  (8) 

where Z is the sum of the squares of the atomic scat- 
tering factors (Wilson, 1942), 

cov (I1, I2) = 0, (9) 
var (11) =va r  (12), (10) 

and equation (6) becomes 

2 var (I) 
R2= N2 . (11) var (I) + 

For non-centrosymmetric and centrosymmetric struc- 
tures with all atoms in general positions the values 
of var (/) have been given by Wilson (1951), so that 

2 ,S'2-- 2 274 
(1)R2= 2 Z 2 - Z 4  (12) 

= 1 -  Z4 
2 Z2 -X4  ' (13) 

6)R2 = 4 Z 2 - 6 X4 (14) 
3 Z 2 - 3  Z4 

2274 __4- 
- x -  3(Z 2_ '~'4) ' (15) 

where 274 is the sum of the fourth powers of the atomic 
scattering factors. Ordinarily 2"4 is small compared with 
X 2, so that (1)R2 has a value close to that given by 

Lens t ra ,  but (1)R2 is about 1.3. 

Hypersymmetry  and sesquisymmetry 

The variance of I is increased by non-crystallographic 
symmetry (Lipson & Woolfson, 1952; Wilson, 1952; 
Rogers & Wilson, 1953; Wilson, 1956); the papers 
cited should be consulted for the nomenclature and 
symbolism. If n is the degree of hypersymmetry and p 
that of sesquisymmetry, 

(n,p)var(I)=[2+(3"2-"+l-3)/p]Z2- y'z4 (16) 

[Wilson, 1956; equation (105)], 

4 +  2(3"2 -"+ 1_ 3)/p-  2 x 3n~'4/~ y'2 
(n,p)R2= 3+(y,z_,,+~_3)/p_Y, X4/Z2 (17) 

For p =  1 ; n=0 ,1  ; this reduces to equations (13) and 
(15). For large n it approaches 

(c~,p)R2=2 , (18) 
and for large p 

2 × 3"- 1Z4/Z2 
(n, o o ) R 2 = ~ - -  3_3nz ,4 /27  2 ; (19) 

here the main term is the same as in the expression for 
the centrosymmetric case. 

Atoms in special positions 

Atoms in special positions, on the other hand, reduce 
the variance. Hauptmann & Karle (1952) give an ex- 
pression equivalent to var ( I ) + Z  2 for the case where 
some of or all the centres of symmetry in a centro- 
symmetric space group are occupied, and undoubtedly 
other results concerning special positions are scattered 
in the extensive literature on direct methods. However, 
atoms in such special positions are likely to be correctly 
placed in any trial structure, so that the term cov (11,12) 
in equation (7) cannot be neglected. It may be quicker, 
if R2 is wanted in any particular case, to calculate 
var (I) and coy(l,, 12) by methods like those of Wilson 
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(1951) and Lenstra (1974), rather than to search the 
voluminous literature for incidental relevant results. 

Largest likely values of R1 

On squaring equation (4) the expression for the residual 
R1 becomes 

R , =  <F~) (20) 

and, for unrelated structures consisting of the same 
atoms, 

( F I ) =  (F~) = (F2) ,  (21) 

(FIF2)= (F)  2 , (22) 

<F> 2 
R1=2  [ 1 <F2) ] . (23) 

The second term in equation (23) is the test ratio Q 
introduced by Wilson (1949), and has the value n/4 for 
a non-centrosymmetric crystal and 2/n for a centro- 
symmetric crystal. Thus 

(1)R~ = 2(1 - n/4) ~0 .43 ,  (24) 
and 

(T)R~ = 2(1 - 2/n) ~0 .73 .  (25) 

For hypersymmetric crystals 

Qn = 23n- 2:g- 2n + 1 (26) 

[Rogers & Wilson, 1953; equation (34)], so that 

(n)R,=2(1-Q,)  (27) 

= 2 - 23"- ln-2" + 1, (28) 

reducing to (24) and (25) for n = 0, 1. 
The above expressions for Qn contain only the leading 

term; corrections depending on X4 and possibly higher 
moments are to be expected. Those for (1)Rt could be 
obtained from equation (79) of Hauptmann & Karle. 
Expressions for 

~' (Fin-- F~n) 2 
Rm= ~ F~ m (29) 

(Wilson, 1973) of the same order of accuracy as equa- 
tion (28) could readily be obtained from expressions 
given by Rogers & Wilson if desired; the expressions 
for sesquicentric structures given by Wilson (1956) 
permit the evaluation of Rm only for even values of m. 

Problems of sealing 

In many actual cases there will be a problem of scaling, 
since, for example, It may be a set of relative measured 
intensities, and 12 a set of calculated intensities. The 
proper procedure would appear to be to multiply 12 by 
a sealing factor, a function of sin 2 0 if necessary, so that 
for each range of sin 2 0 

(1~)=(I2)  • ~30) 

Often, however, a scaling factor E is included in 
the refinement process as an adjustable parameter, so 
that the residual corresponding to R2 is 

( / ! -  EI2) z 
$2= 2 13 (31) 

The condition for minimum $2, as a function of E, is 

E= (I~I2)/ (I~) , (32) 
giving 

(S2)min : 1--(IxI2)2/(1~) ( I~) .  (33) 

The value of $2, with the scaling factor adjusted by 
refinement, is therefore always less than unity, whereas 
all that can be said about R 2 when properly scaled is 
that it must be less than two. If/1 and/2 are unrelated 
the scaling factors given by equation (32) are ridi- 
culously small: 

(1)E=X2/(2 .~'2 - .~-'4) ,.~ 1-2 , (34) 
(1-)E= X2/3( X2 - X4) ,,, ½ , (35) 

instead of the true value of unity. The corresponding 
values of the residual are 

(1) (S2)min : 1 -,~v'4/(2 ,~v'2-,~v'4)2 (36) 

,,~0"75, (37) 
(l'i) (S2)min : 1 - X4 /9 (X 2 -  X4) 2 (38) 

~ 0 " 8 9 .  (39) 

A similar calculation for the analogue of RI gives a 
scaling factor 0, the test ratio already mentioned, and 
(S0min = 1 --02. Thus 

(1) (S1)min = 1 - n 2 / 1 6 ~ 0 . 3 8 ,  (40) 
(1-) (S1)min = 1 -4 /n2~0"55 .  (41) 

Similar but smaller effects of refining scaling param- 
eters for nearly correct, instead of entirely incorrect, 
structures are discussed elsewhere (Wilson, 1974; T. R. 
Lomer & A. J. C. Wilson, in preparation). 
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